Design and Implementation of PACKTER

Daisuke MIYAMOTO
Project PACKTER
namaya2hashi@packter.jp

ABSTRACT

This paper introduces PACKTER, a free and open source
software for visualization of Internet traffic. This paper also
extends it for support network forensics. Many traffic vi-
sualization make network operators realize the current net-
work status, including anomalous activities. Our motivation
is the utilization of the visualization tools for starting net-
work forensics process, e.g., investigating where the issued
packets came from. Since there were few softwares for our
intent, this paper develops PACKTER, which is able to visu-
alize traffic based on per-packet and/or per-flow information
in real-time. This paper also extends PACKTER to have a
function for negotiation to a network forensic system.

1. INTRODUCTION

Creating new network operation style is beyond the
visualization of today’s network. Whereas some visu-
alization tools provide novel graphics representing net-
work activities, such tools are not designed to provide
any user-interfaces for network operation. Imagine if
you are playing an online game, you will react when the
game screen shows some important events. You will also
try to control the game by input devices with keeping
your sights to the screen. In the context of today’s net-
work operation, after you realized such events from vi-
sualization screen, you might launch other applications,
login to some servers, and prepare next operations. We
assume that there is lack of support for starting opera-
tions within the network visualization tools.

Our motivation is to integrate the functions of start-
ing network operation processes with real-time traffic
visualization tools. Due to that the tool often makes
its operators realize anomalous activities, we consider
to employ the tools as the user-interface for network
forensics.

Unfortunately, we could not find suitable tools for our
intent. Even though many researches for visualization
had been proposed, few tools were available as a free
and open source software. Moreover, the most of them
were designed to show the results of their offline anal-
ysis. Aside from offline analysis, very few real-time vi-
sualization tools were found. Whereas these tools were

Takuji IMURA
Project PACKTER
uirou@packer.jp

Figure 1: Overview of PACKTER

practical and innovative, our intent required to show
information with a per-packet-granularity of the traffic.

This paper designs and implements a traffic visual-
ization tool, named PACKTER [7], at first. PACKTER
consists of two programs, PACKTER agent and PACK-
TER viewer; the agent passively probes per-packet and/or
per-flow information, and the viewer visualizes the col-
lected information in three-dimensional screen.

This paper then extends our developed programs to
support network forensics processes. There are various
types of forensics, but this paper focuses on identifying
whether a packet comes from. Because of that the pur-
pose is similar to IP traceback, which aims at locating
the source node even if the packet employed spoofed
source IP address, we refined PACKTER, to cooperate
to InterTrack [5], one of the IP traceback systems.

The rest of the paper is organized as follows. Sec-
tion 2 illustrates the development of PACKTER and
section 3 explains our extension for IP traceback. Sec-
tion 4 reveals the limitations in PACKTER, and sec-
tion 5 finally summarizes our contribution.

2. DEVELOPMENT OF PACKTER

This section introduces the design principles and the

developments of our Internet traffic visualization tool,
named PACKTER. While designing its visual, we re-
ceived much inspirations from NICTER [4], the famous
traffic visualizer in Japan. Its three-dimensional visu-
alization engine shows traffic animation inside a cube.
Each packet is represented by a colored rectangle, and
the rectangle appears on a plane of the cube when a
packet is received at the monitored network. Note that
NICTER is not released under any free and open source
licenses, our project is necessary to develop totally dif-
ferent codes and takes on an overall distinct system ar-
chitecture.

2.1 Overview

Figure 1 shows a screen shot of PACKTER. It ap-
pears two squares, named “sender board” and “receiver
board”, in respectively. The former presents the traffic
source, the latter denotes the destination.

In each square, x axis denotes an IP address where the
left corner is 0.0.0.0 and the right (1) is 255.255.255.255.
Given the IP address, the address will be regularized in
the range of 0 to 1 by following steps. At first, the ad-
dress is converted to decimal. It then divided by 232,
and finally located in the range of 0 to 1. When us-
ing IPv6 addresses, the left corner is :: and the right
is fEfF: AT £E6F: AT A1 AT AT 6T, and the decimal decoded
IPv6 address is divided by 22® for the regularization.

y axis denotes a port number if the packet is a TCP
segment or a UDP datagram. The value is also divided
by 2'6 to be regularized in the range of 0 to 1. If the
packet is an ICMP message, ICMP type value devided
/28 is for the sender y cordinate, and ICMP code value
devided by /28 is for the receiver 3. Since bot TCP and
UDP port numbers are 16bit fields, and both ICMP
type and code are 8bit fields, the regularized values are
in the range of 0 to 1.

In PACKTER, a ball is called a “flying object”, which
presents each packet. Its color variation has ten types as
shown in Table 1. The ball appears at the sender board
at first, then flows toward the receiver board, and finally
vanishes when it reached to the receiver board. For ex-
ample, if the pairs of the traffic source address and its
TCP port number is given (10.0.0.1,60000). The deci-
mal form of TP address is 167,772,161, so x coordinate
is 0.04 (= 167,772,161/232) and y coordinate is 0.92 (=
60000/216). So, the ball appears at (0.039,0.916) in the
sender board. Given the destination pair (127.0.0.1, 80),
the ball flows toward (0.496,0.001) in the receiver board.
If the packet is a TCP SYN packet, the ball will be col-
ored blue as shown in Table 1.

2.2 Design

PACKTER is composed of two types of programs,
agent and viewer. An agent collects a packet and sends
the packet’s information to a viewer, the viewer then

Table 1: Coloring variations of flying objects

Color Layer 3 | Layer 4 Flag

1 Pink 1Pv4 TCP ACK

2 Blue IPv4 TCP SYN

3 Red IPv4 TCP FIN or RST
4 Purple 1Pv4 UDP

5 Green IPv4 ICMP

6 Yellow IPv6 TCP ACK

7 White TPv6 TCP SYN

8 Skyblue TPv6 TCP FIN or RST
9 Lightgreen IPv6 UDP

10 Orange IPv6 ICMP

Table 2: PACKTER protocol format
Category (i) : Drawing flying object
PACKTER\r\n
SRCIP,DSTIP,SRCPORT,DSTPORT,FLAG,DESCRIPTION
Category (ii) : Showing message and picture, and playing sound
PACKTERMESG\r\n
picture-file,text-message
PACKTERATML\r\n
html-message
PACKTERSOUND\r\n
seconds,sound-file
PACKTERSE\r\n
sound-effect-file
PACKTERVOICE\r\n
text-message
PACKTERSKYDOMETEXTURE\r\n
texture-file

draws the packet as we described in section 2.1.

Currently, our agent is available to collect packets by
(1) monitoring a network interface, (2) reading a packet
trace file, (3) accepting flow sampling protocols, and (4)
receiving via Unix domain socket. In the cases of (1)
and (2), the agent uses typical packet capture library for
collecting. In the case of (3), the agent works as the col-
lector for sFlow [6] and/or NetFlow [1]. Within these
sampling technologies called xFlow, the xFlow agents
sample packets with a specified sampling rate, and the
agents send the packets’ information to an xFlow collec-
tor. Since PACKTER agent equips the function of the
xFlow collector, it accepts the flow information from the
xFlow agents. The function (4) is designed to cooperate
with external programs. For example, SNORT [9], the
typical intrusion detection software (IDS), detects ma-
licious traffic and it then outputs the packets’ informa-
tion via Unix domain socket. Because of monitoring the
socket, PACKTER agents can collect suspicious traffic
which SNORT detected.

PACKTER agents sends the information to the viewer
based on PACKTER'’s protocol format as shown in Ta-
ble 2. Our protocol can be categorized into two types.
The category (i) is used for drawing packets into the
viewer’s screen. The column consists of the source IPv4
or IPv6 address, the destination address, the source
port number or ICMP type, the destination port num-
ber or ICMP code, flag, and the description of the
packet; the flag is corresponding to the first column
in Table 1. The category (ii) is used for showing mes-
sage, pictures, and play sound. PACKTER supports to

—{ PACKTER Viewer
M :Cfn‘i - | Visualization |_ User-Interface
anageme Module Module
Module
A
Queue PACKTER
Management [« Protocol
Module Module
PACKTER PACKTER PACKTER PACKTER
Protocol Protocol Protocol Protocol
PACKTER PACKTER PACKTER PACKTER
Agent Agent Agent Agent
NclIhm cFlan Unix dnmtm socket P(’AP‘ﬁ»rmal
NetFlow sFlow SNORT Probe
Agent Agent (IDS)

Figure 2: PACKTER architecture

render text or HTML message in its screen. It also sup-
ports to play sound files till specified seconds pass, and
has a function to pronounce the specified text messages
by cooperating to a speech synthesis software.

2.3 Implementation

The architectures of PACKTER agent and viewer are
shown in Figure 2. PACKTER agent employs PCAP [11]
library for collecting packets from network interfaces
and/or reading a packet trace file. It also supports ran-
dom sampling based on the probability which users can
freely specify. The viewer also supports sFlow version
4.0, NetFlow version 9.0, and SNORT version 1.6 or
later. Based on each packet, PACKTER agent sends
the information to the viewer over UDP datagram.

PACKTER viewer is composed of five modules. The
first module, PACKTER protocol-handling module binds
on UDP port 11300, accepts the packet information
which the agent sent, and inserts the information at
the tail of the queue. The second, Queue Manage-
ment Module, set time stamp to each information. The
third, Scene Management Module retrieves the queue
by referring to the time stamp; it is used to play the
viewer’s screen backwards. The forth, Visualization
Module, draws a ball at the corresponding coordinates
on the sender board, and makes the ball flow to the re-
ceiver board. The rest of module deals with keyboard
and mouse events. The viewer supports that the users
change the viewpoint in screen. It also supports for the
users to replay scenes.

Our implemented programs are available as open source
softwares [7]. PACKTER agent is written in C and it
runs on POSIX operating systems. PACKTER viewer
employs C# and XNA Game Studio 3.1 for its render-
ing engine, so it runs on windows operating systems.

3. NEGOTIATION TO IP TRACEBACK

This section develops PACKTER to equip further
functions that aim at facilitating to launch network
forensic. We focused on cooperating to IP traceback,
which investigates where the issued packet came from.
In order to facilitate the discussion in accurately, sec-
tion 3.1 provides the summary of the traceback and
the typical implementation named InterTrack [3]. Sec-
tion 3.2 illustrates the trace request process for PACK-
TER, and section 3.3 shows the trace results.

3.1 InterTrack

Essentially, Denial of Service (DoS) attacks exhaust
the resources of a remote hosts or networks that are
otherwise accessible to legitimate users. Especially, a
flooding attack is the typical example of DoS attacks. In
the case of the flooding attack, the attackers often used
the source IP address spoofing technique. IP address
spoofing can be defined as the intentional misrepresen-
tation of the source IP address in an IP packet in order
to conceal the sender of the packet or to impersonate
another computing system. Therefore, it is difficult to
identify the actual source of the attack packets using
traditional countermeasures.

IP traceback aims to locate attack sources, regardless
of the spoofed source IP addresses. Especially, Source
Path Isolation Engine (SPIE) [8] is a feasible solution for
tracing individual attack packet. When a node is suf-
fered from DoS attacks, the node calculates a hash from
the attack packet, composes a traceback query including
the hash, and sends the query toward the previous hop
router. However, SPIE requires that every router cap-
tures partial packet information of every packet which
passes through the router. Trace-ability would decrease
to a minimum if there were only a few routers that sup-
port SPIE.

For reducing the deployment cost of IP traceback sys-
tems, several researches [2, 3] have proposed the use of
the AS-level deployment to facilitate global deployment
of IP traceback systems. In this case, it is necessary to
deploy the system into each AS instead of implement-
ing the SPIE in each router. Since the traceback system
monitors the traffic between the AS border routers and
exchanges information for tracing the issued packets,
the traceback client can identify the source AS of the
issued packets.

InterTrack is designed for deployment at AS level,
and its main goal is to reconstruct the reverse AS path,
which is the true attack path in AS hop level, and to

AS-2

AS-1

1T
Trace Result Aggregation

Trace Restljl‘t Aggregation

or 3 ™ = | o 1™ > m
Tracking Initlaion Stage Inter-AS Tracking Stage Trace Result Aggregation
Exporting L J[‘
N — =
y o X ® N
e DTM BTM BTM DTM
H DTS BTS BTS DTS
IntraAS Tracking Stage | Border Tracking Stage Border Tracking Stage | IntraAS Tracking Stage))
(IGP domain) (EGP domain) (EGP domain) (IGP domain) Exporting Tracking Resuits

Figure 3: Procedures of an attack tracking on InterTrack

detect the source ASes of an attack if possible. An-
other goal of InterTrack is to achieve the interconnec-
tion among IP traceback system(IP-TBS)s, detection
systems and prevention systems inside an AS.

In InterTrack architecture, each AS has a set of In-
terTrack components. A set of InterTrack components
includes: the Inter-domain Tracking Manager (ITM),
Border Tracking Manager (BTM), Domain Traceback
Manager (DTM), Decision Point (DP), and Traceback
Client (TC). Figure 3 shows the overview of InterTrack
architecture. A phased tracking approach is applied
on inter-domain traceback trials through InterTrack.
InterTrack separates a traceback trial in four stages
along with network boundaries; the tracking initiation
stage, the border tracking stage, the intra-AS track-
ing stage and the inter-AS tracking stage. After ac-
cepting a traceback request on the tracking initiation
stage, each AS preliminary investigates its own sta-
tus against the mounted attack on the border tracking
stage. On the border tracking stage, an AS judges by
InterTrack whether or not the AS is suffered from an
attack, whether or not the AS is forwarding malicious
attack packets, or whether or not the AS is suspected
of having attacker nodes on the inside. Triggered by
the investigated AS status, InterTrack runs the inter-
AS tracking stage and the intra-AS tracking stage in
parallel. Detailed behavior of each component were de-
scribed in [3].

3.2 Sending Trace Request

Assuming if PACKTER viewer has enough informa-
tion for IP traceback, the users of the viewer can eas-
ily start the tracking initiation stage with few opera-
tions; selecting packet with the mouse, and triggering
the stage with the keyboard. As we described in sec-
tion 3.1, the trace request from TC to DP is the trigger
of the stage. For doing so, TC calculates hash values
from sampled packets, composes a client trace request
message with the specified format, sends the trace re-
quest to DP, and finally receives the result written in
the client trace reply format.

In order to make PACKTER viewer work as TC, this
paper modifies PACKTER agent for giving the informa-
tion to the viewer, and then develops new module which
interconnects between PACKTER viewer and DP. The
minimum requirement for the information is to contain
the hash values for each packet. The hashing process
was formalized by Snoren et al. [8] in the case of IPv4
packet, and by Stayer [10] in the case of IPv6 packet.
These proposed to mask the particular header fields,
that have the possibility of being changed at a router
along the path (e.g., IP time-to-live field), to zero prior
to digesting. According to the latest implementation
of InterTrack, it implemented the masking algorithms
and it also employed MD5 algorithm as the digesting
function.

Accordingly, we make PACKTER agent calculate the
hash value for each packet in the same fashion of Inter-
Track. Since our protocol format supported to include
text strings in the description field, the agent is able to
insert information to the filed. Figure 4 shows a case
study for including the trace information in PACKTER
protocol. The description is composed of the hash value
for each packet and the TP address of the interconnect-
ing module between the viewer and DP.

When drawing the packet in the screen of the viewer,
the viewer provides an user-interface which enables to
select the flying object with a mouse. Because of render-
ing the objects in three-dimensional screen, the viewer
observes the current coordinates of the mouse. It then
determines points in screen space on the mouse coor-
dinates by projecting a vector from screen space into
object space.

After the user selected a packet and he then pressed
“T” key, the viewer sends the hash value of the packet
to the interconnecting module, named PACKTER_TC;
in the case of Figure 4, PACKTER_ TC runs at host
192.168.1.1 on UDP port 11301, and receives the hash
value. Figure 5 shows an example for the client trace
request.

3.3 Receiving Trace Reply

PACKTER\r\n
10.0.0.1,127.0.0.1,60000,80,1,(hash value)-192.168.1.1\r\n

Figure 4: Example for PACKTER agent’s message

\
<?xml version="1.0" encoding="UTF-8"7>
<InterTrackMessage type="ClientTraceRequest" >

<ClientTraceRequest>
<DestinationNode>
<NodelD idtype="TP">
<IPAddress version="4" block="loopback" mask="32">127.
0.0.1</IPAddress>
< /NodelD>
< /DestinationNode>
<SourceNode>
<NodelD idtype="1P">
<IPAddress version="4" block="loopback" mask="32">127.
0.0.1</TPAddress>
< /NodelD>
< /SourceNode>
<TemporarySequenceNumber sec="1343208049" usec="320831
ll/>
<TTL>16</TTL>
<PacketDump encodetype="md5" header="ip" iftype="1" Pay
loadLength="32"> (hash value)</PacketDump>
<Options>
<Option type="type">PACKTER</Option>
</Options>
< /ClientTraceRequest >
< /InterTrackMessage >

. v

Figure 5: PACKTER TC’s client trace request

PACKTER _TC receives two responses from DP. One
is called a message identification reply message which
notifies that DP accepted the trace request. The other
is a client trace reply message which informs the re-
sult of the trace request. Whenever a traceback trial
succeeds, the client trace reply message contains some
AS paths that the issued packet came from. Otherwise,
the message says “notfound” instead of the AS paths.
In short, “succeeded” means that the issued packet was
found in the outside of the AS.

In order to inform DP’s responses to the user of PACK-
TER viewer, PACKTER _TC then generates three kinds
of alerts, namely, (i) the request was being accepted, (ii)
the traceback trial was succeeded, and (iii) the trial was
failed. In any cases, PACKTER_TC sends messages
toward the viewer; the message are formatted along
with PACKTER protocol, and the messages also make
the viewer play music, display text or HTML messages,
avatars, and face icons. Figure 6(a), 6(b), and 6(c)
demonstrate the cases of (i), (ii) and (iii), respectively.

4. CONSIDERATIONS

Whereas the number of the traffic visualization re-
searches increases, the number of the useful implemen-
tation does not so much. Our project launched at Au-
gust, 2008, however, there were and are very few visu-
alization tools that can be available as free and open

Launched IP traceback process

Hash Value: 031c6860326e88d3eed1707cdf9bbcad

(a) Launched IP Traceback Request

Traceback trial succeeded

Hash Value: 031c6860326e88d3ee41707cdf9bbcad
Depth 0:found AS:65001 --> Target

(b) Succeeded

Traceback trial failed

Hash Value: 031c6860326e88d3ee41707cdf9bbcad
Depth 0:notfound AS:65001 Target

(c) Failed
Figure 6: Execution of IP traceback trial

source softwares. According to SourceForge, roughly 17
projects were found, however eight of 17 were relevant to
load, air, vehicular traffic rather than Internet traffic. In
the rest of nine were mainly offline analysis tools and /or
network simulators. Similar tendencies were seen at the
other websites, including freshmeat, github, and Google
Code. As we mentioned in section 1, our primary moti-
vation is to integrate the functions of starting network
forensics processes with a real-time traffic visualizater.
The major limitation in PACKTER, is the number of
flying objects. Even PACKTER utilizes GPU through
Microsoft XNA Game Studio library, showing roughly
2000 or more objects makes the PC which runs the
viewer become heavily loaded. When we attempted to
monitor at our managed Internet exchange point, we
configured to the agent with sampling rate 1/8192.
The secondary limitation is the number of the va-
rieties of the supported network forensics; this paper

Figure 7: Missiles representing DoS attacks

focuses on cooperating to IP traceback, whereas vari-
ous forensics have been proposed. To the best of our
knowledge, network forensics often requires the pointer
of forensics servers and the additional information for
its forensics. Fortunately, these schemes can be easily
supported as we employed description schema in PACK-
TER protocol for launching IP traceback processes.

The remaining issue is the way for informing anoma-
lous activities to network operators. PACKTER sup-
ports to employ both polygonal models and their tex-
ture images, all of that can be specified by the operator.
For example, PACKTER agent equips the function of
detecting DoS by comparing the number of packets with
the specified threshold. When the agent sends PACK-
TER message to the viewer with set of an unused flag
number, the viewer looks up both mesh and texture
corresponding to the flag number. Figure 7 shows the
case of TCP Flooding, where missiles are detected DoS
attacks.

PACKTER also supports the network traffic auraliza-
tion, which means the technique of creation and repro-
duction of sound from the packet information. As we
explained in section 2, PACKTER plays sound file and
pronounces specified text messages by cooperating to a
speech synthesis software. Of course, visualization tools
are not so useful for a person with visual impairment,
some other operational console should be considered for
them, however, it was beyond the scope of this paper.

S. CONCLUSION

This paper has presented a network traffic visualizer
and extended it for launching network forensics pro-
cesses. Our developed PACKTER consisted of an agent
program and a viewer program. The agent was de-
signed to collect per packet information by monitoring
network interface, reading a packet trace file, accepting

flow sampling protocols, and receiving via Unix domain
socket for cooperation to intrusion detection systems.
The viewer was available to observe collected informa-
tion via our defined PACKTER protocol, and drew the
information in its three-dimensional screen; the each
packet appeared at the sender board, and flowed to-
ward the receiver board with animation.

We then added the function to cooperate to network
forensics systems to PACKTER. Since the paper fo-
cused on starting IP traceback processes, we modified
the agent to send a hash value extracted from the packet
information. PACKTER also supported to inform such
information to network operators that accepting the
trace request and the results of the request.

Note that PACKTER is online available [7], and all
source codes are released under BSD license, and media
files such as pictures, textures, mesh objects, and sound
files are released under CC-BY in Creative Commons
license. We believe that our work will expedite the uti-
lization of the traffic visualizer for supporting network
operations.

6. REFERENCES

[1] Claise, B. Cisco Systems NetFlow Services Export
Version 9. RFC 3954, IETF, Oct. 2004.

[2] Gong, C., Le, T., Korkmaz, T., and Sarac, K.
Single Packet TP Traceback in AS-level Partial
Deployment Scenario. In Proceedings of IEEE
Global Telecommunications Conference (Nov.
2005).

[3] Hazeyama, H., Kadobayashi, Y., Miyamoto, D.,
and Oe, M. An Autonomous Architecture for
Inter-Domain Traceback across the Borders of
Network Operation. In Proceedings of the 11th
IEEE Symposium on Computers and
Communications (Jun. 2006).

[4] Inoue, D., Eto, M., Yoshioka, K., Baba, S.,
Suzuki, K., Nakazato, J., Ohtaka, K., and Nakao,
K. nicter: An Incident Analysis System toward
Binding Network Monitoring with Malware
Analysis. In Proceedings of WOMBAT Workshop
on Information Security Threats Data Collection
and Sharing (Apr. 2008), pp. 58-66.

[5] InterTrack. IP Traceback : A mechanism to find
attack paths. Available at:
http://intertrack.naist.jp/.

[6] Phaal, P., Panchen, S., and McKee, N. InMon
Corporation’s sFlow: A Method for Monitoring
Traffic in Switched and Routed Networks. RFC
3176, IETF, Sep. 2001.

[7] Project Packter. PACKTER: A Multi Purpose
Traffic Visualizer. Available at:
http://www.packter.net/index e.html.

[8] Snoeren, A. C., Partridge, C., Sanches, L. A.,
Jones, C. E., Tchakountio, F., Kent, S. T., and

Stayer, W. T. Hash-based IP traceback. In
Proceedings of the ACM SIGCOMM Conference
(Aug. 2001), pp. 3-14.

[9] Snort. The Open Source Network Intrusion
Detection System. Available at:
http://www.snort.org/.

[10] Stayer, W. T., Jones, C. E., Tchakountio, F., and
Hain, R. R. SPIE-IPv6: Single IPv6 Packet
Traceback. In Proceedings of the 29th Annual
IEEE International Conference on Local
Computer Networks (Nov. 2004), pp. 118-125.

[11] The Internet Society. PCAP Next Generation
Dump File Format. Available at:
http://www.winpcap.org/ntar/draft/
PCAP-DumpFileFormat.html.

